Atomic decomposition and weak factorization for Bergman–Orlicz spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On an atomic decomposition in Banach spaces

An atomic decomposition is considered in Banach space.  A method for constructing an atomic decomposition of Banach  space, starting with atomic decomposition of  subspaces  is presented. Some relations between them are established. The proposed method is used in the  study  of the  frame  properties of systems of eigenfunctions and associated functions of discontinuous differential operators.

متن کامل

Hankel Operators and Weak Factorization for Hardy-orlicz Spaces

We study the holomorphic Hardy-Orlicz spaces H(Ω), where Ω is the unit ball or, more generally, a convex domain of finite type or a strictly pseudoconvex domain in C. The function Φ is in particular such that H(Ω) ⊂ H(Ω) ⊂ H(Ω) for some p > 0. We develop for them maximal characterizations, atomic and molecular decompositions. We then prove weak factorization theorems involving the space BMOA(Ω)...

متن کامل

On semi weak factorization structures

In this article the notions of semi weak orthogonality and semi weak factorization structure in a category $mathcal X$ are introduced. Then the relationship between semi weak factorization structures and quasi right (left) and weak factorization structures is given. The main result is a characterization of semi weak orthogonality, factorization of morphisms, and semi weak factorization structur...

متن کامل

ATOMIC DECOMPOSITIONS FOR WEAK HARDY SPACES WQp AND WDp

In this paper some necessary and sufficient conditions for new forms of atomic decompositions of weak martingale Hardy spaces wQp and wDp are obtained.

متن کامل

Purely Non-atomic Weak L P Spaces

Let (Ω,Σ, μ) be a purely non-atomic measure space, and let 1 < p < ∞. If L(Ω,Σ, μ) is isomorphic, as a Banach space, to L(Ω,Σ, μ) for some purely atomic measure space (Ω,Σ, μ), then there is a measurable partition Ω = Ω1 ∪Ω2 such that (Ω1,Σ ∩ Ω1, μ|Σ∩Ω1) is countably generated and σ-finite, and that μ(σ) = 0 or ∞ for every measurable σ ⊆ Ω2. In particular, L(Ω,Σ, μ) is isomorphic to l.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Colloquium Mathematicum

سال: 2020

ISSN: 0010-1354,1730-6302

DOI: 10.4064/cm7597-3-2019